Geometri
En vinkel med toppunkt på sirkelperiferien kalles en periferivinkel.
En vinkel med toppunkt i sirkelsenteret kalles en sentralvinkel.
Formel
Periferivinkel og sentralvinkel når utspent over samme sirkelbue
Dersom periferivinkelen utspenner samme vinkelbue som en sentralvinkelen , har du at sentralvinkelen er dobbelt så stor som periferivinkelen:
Tenk på dette
Bevis for formelen om periferivinkler og sentralvinkler
Se nøye på figuren!
Fra figuren får du følgende informasjon:
-
siden de er radien i sirkelen.
-
Derfor er og likebeinte.
-
Dette medfører at ,
-
og at .
-
Dermed blir .
-
Du har også at .
Nå fletter du dette sammen punktvis oppover og får at:
Eksempel 1
Finn alle vinklene i de to trekantene
Siden du kjenner periferivinkelen så vet du at sentralvinkelen er dobbel så stor. Dermed får du at
Trekant er en likebeint trekant siden er radien i sirkelen. Dermed vet du at
Trekant har vinkel ; du må dermed finne og . Siden du vet at , så har du at
Da blir den siste vinkelen
Du har nå funnet alle vinklene i de to trekantene.